Pars-Orbital-Methode (PO-MO), 2. Mitt.*:

Anwendung der Charakterordnungen auf Diels-Alder-Reaktionen

Von

H. Sofer, O. E. Polansky und G. Derflinger

Aus dem Institut für Theoretische Chemie der Universität Wien, A-1090, dem Institut für Statistik der Universität Wien, A-1010, dem Institut für Physikalische Chemie der Technischen Hochschule Wien, A-1060, und dem Max-Planck-Institut für Kohlenforschung, D-433 Mülheim/Ruhr

Mit 4 Abbildungen

(Eingegangen am 26. April 1968)

Die p-Lokalisierungsenergie $L_{\rm p}$ nach Brown wird als Maß der Diels—Alder-Reaktivität in Beziehung gesetzt zu den Äthylen-, Butadien- und Benzol-Charakterordnungen ρ . Bei Angriff an peripheren cisoiden C_4 -Einheiten des Moleküls fällt $L_{\rm p}$ erwartungsgemäß mit $\rho_{dienvid}$ und steigt mit den anderen Charakterordnungen. Werden innerhalb eines einzigen Benzolrings nur sekundäre C-Atome angegriffen, so steigt $L_{\rm p}$ mit allen Charakterordnungen, werden hingegen auch tertiäre C-Atome miterfaßt, fällt $L_{\rm p}$ mit allen Charakterordnungen. Dieser Hinweis auf wahrscheinliche Reaktionsmechanismen zeigt neuerlich die Signifikanz dieser Reaktionsindices.

Brown's p-localization energy as a measure for the Diels—Alder-reactivity is correlated to ethylene-, butadiene- and benzene-character orders. If the molecule is attacked at peripheric cisoidic C₄-units, L_p decreases with $\rho_{dienoid}$ and increases with the other ρ 's, as expected. If in the reaction only secondary C-atoms of a single benzene ring are involved, L_p increases with all character orders, but if tertiary C-atoms are also involved, L_p decreases with the character orders. This hint of probable reaction mechanism shows once again the significance of these new indices of reactivity.

^{*} Als 1. Mitt. zählen wir die in 5 zitierte Arbeit.

Die von Clar und Mitarbeitern¹⁻⁴ formulierte Annahme der Existenz sogenannter lokalisierter benzoider Gebiete in kondensierten aromatischen Kohlenwasserstoffen (KW) haben zwei von uns $(O.\ E.\ P.\ und\ G.\ D.)$ an einer großen Zahl aromatischer KW überprüft⁵. In dieser Arbeit wurden ferner Charakterordnungen ρ als Reaktionsindices eingeführt.

Die Charakterordnung mißt den Beitrag der bindenden Orbitale eines frei gewählten Bruchstücks zu den bindenden Orbitalen des gesamten Moleküls. Sie spiegelt somit das dem Organiker geläufige "Analogie-prinzip" wider. In unserer genannten Arbeit⁵ wurden hauptsächlich ben-

zoide und dienoide Charakterordnungen peripherer cisoider C₄-Einheiten berechnet und letztere mit der benzogenen Maleinsäureanhydrid-Addition korreliert. Hierbei wurden nur solche C₄-Einheiten in den Kreis der Betrachtung gezogen, bei welchen die 4 C-Atome mindestens zwei verschiedenen Benzolringen angehören.

Kürzlich haben Tyutyulkov und $Markov^6$ für eine Reihe von π -Komplexen, welche aus Maleinsäureanhydrid und verschiedenen aromatischen KW gebildet werden, die Delokalisierungsenergien und die p-Lokalisierungsenergien L_p nach Brown linear korrelieren können. Es war daher für uns von Interesse zu überprüfen, wie weit die p-Lokalisierungsenergien L_p mit den oben erwähnten Charakterordnungen ρ in einem direkten Zusammenhang stehen. Für die Diskussion dieser Frage sind jedoch auch die dienoiden Charakterordnungen solcher C_4 -Einheiten von Bedeutung, deren vier C-Atome gegebenenfalls einem einzigen Benzolring angehören können. Zur Unterscheidung dieser beiden verschiedenen Anordnungen bezeichnen wir die letztgenannte dienoide Charakterordnung mit $\rho_{dienoid}^{endo}$ (z. B. die dienoide Charakterordnung des aus den Atomen 1 bis 4 gebildeten Bruchstücks in Abb. 1 b), die oben genannte im Gegensatz hierzu mit $\rho_{dienoid}^{exo}$ (z. B. das aus den Atomen 4, 4a, 4b und 5 gebildete Bruchstück in Abb. 1 b).

¹ E. Clar und M. Zander, J. Chem. Soc. [London] 1958, 1861.

² E. Clar, Tetrahedron 5, 98 (1959); 6, 355 (1959); 9, 202 (1960).

³ E. Clar, C. T. Ironside und M. Zander, J. Chem. Soc. [London] 1959, 142.

⁴ E. Clar und A. McCallum, Tetrahedron 10, 171 (1960).

Der Kürze halber verwenden wir im weiteren Text ρ_d^d für die endo- und ρ_d^x für die exo-dienoide Charakterordnung. Die benzoide Charakterordnung kürzen wir mit ρ_b , die olefinische (äthylenoide) Charakterordnung, welche für alternierende KW mit der bekannten Bindungsordnung identisch ist⁵, mit p, die Mittelwerte aus benzoiden bzw. dienoiden oder äthylenoiden Charakterordnungen mit ρ_b bzw. ρ_d und p ab.

Wir haben das Datenmaterial der oben zitierten Arbeit⁵ (Angriff von Maleinsäureanhydrid an exo-cisoiden C₄-Einheiten) und das von Tyutyulkov und Markov⁶ (Angriff von MSA an endo-cisoiden C₄-Einheiten) und die von Sofer⁷ berechneten Charakterogramme verwendet und — soweit nötig — erweitert.

Angriff an exo-cisoiden C4-Einheiten

Zur Diskussion des Angriffs an exo-cisoiden C₄-Einheiten (z. B. Abb. 1 b, Stellung 4 und 5) wurden die Charakterordnungen folgender Bruchstücke berechnet, welche mit der betrachteten C₄-Einheit C-Atome gemeinsam haben:

- 1. Äthylen, gebildet aus den beiden mittleren C-Atomen der C_4 -Einheit (Position 4a und 4b in Abb. 1b); Charakterordnung p.
- 2. Butadien, entsprechend der C₄-Einheit (Position 4, 4a, 4b und 5 in Abb. 1b); Charakterordnung ρ_d^x .
- 3. Benzol, welches nur durch die beiden mittleren C-Atome der C₄-Einheit mit dieser verbunden ist (Position 9, 10, 10a, 4a, 4b und 8a in Abb. 1b); Charakterordnung ρ_b .
- 4. Benzole, welche jeweils nur durch zwei benachbarte C-Atome der C_4 -Einheit mit dieser verbunden sind (Ring I, II und III in Abb. 1b); $\bar{\rho}_b$ stellt das arithmetische Mittel der so erhaltenen Charakterordnungen gemäß

$$ar{
ho}_b = rac{1}{3} \left(
ho_b^{ ext{I}} +
ho_b^{ ext{II}} +
ho_b^{ ext{III}}
ight)$$

dar.

Diese Charakterordnungen bzw. ihre Mittelwerte wurden mit L_p , sowie miteinander verglichen. In Tab. 1 sind sie für eine Reihe kondensierter Aromaten angegeben.

 $^{^5}$ O. E. Polansky und G. Derflinger, Internat. J. Quantum Chem. 1, 379 (1967).

⁶ N. Tyutyulkov und P. Markov, Mh. Chem. 99, 861 (1968).

⁷ H. Sofer, Mh. Chem. **99**, 1876 (1968).

Tabelle 1. Angriff an exo-cisoiden C₄-Einheiten Die ρ_d^x - und ρ_b -Werte, ausgenommen die mit c bezeichneten, sind der Arbeit 5 entnommen.

Nr*	$L_{\mathfrak{p}}$	p	${\boldsymbol{P}}_{\boldsymbol{d}}^{\boldsymbol{x}}$	Ρδ	$\overline{\rho}_{b}$
2	4,33 b	0,370	0,669		
4	4,13	0,368	0,678		
5	4,25	0,368	0,663		
8	$4.37^{\text{ b}}$	0,461	0,661	0,813	0,890
12	4,07	0,447	0,692	0,793	0,858
20	4,44 b	0,476	0,633	0,832	0,862
30	4,34	0,428	0,666	0,714	0,865
33	4,16	0,453	0,680 c	0,800 c	0,864
36	4,12	0,451	0,683	0,800	0,864
40	3,80	0,435	0,726	0,772	0,825
44	4,07	0,420	0,697	0,694	0,832
45	4,33	0,420	0,669	0,694	0,859
53	4,16	0,460	0,662c	0,812 c	0,832
54	4,45	0,481	0,626c	0,836 c	0,857
82	4,21	0,427	0,679	0,720	0,851
83	4,26	0,428	0,673	0,719	0,855
84	4,19	0,420	0,683	0,704	0,845
85	3,99	0,420	0,706	0,704	0,816
86	4,44	0,482	0,635	0,804	0,853
87	3,98	0,416	0,709	0,691	0,811
88	4,38	0,473	0,645	0,799	0,858
89	4,34	0,444	0,664	0,749	0,872
90	4,19	0,426	0,679	0,705	0,843
91	4,33	0,425	0,667	0,705	0,862
92	4,05	0,421	0,698	0,692	0,828
93	4,33	0,419	0,669	0,692	0,859
94	3,91	0,414	0,715	0,699	0,823
95	4,01	0,427	0,698	0,731	0,838
96	3,98	0,412	0,706	0,690	0,826
97	$\frac{3,30}{4,27}$	0,456	0,663	0,789	0,871
98	3,71	0,413	0,741	0,690	0,788
99	4.06	0,410	0,697	0,683	0,830
100	4,27	0,456	0,663	0,789	0,874
101	3,52	0,413	0,768	0,683	0,754
102	4,27	0,456	0,663	0,789	0,871
103	3,79	0,411	0,731	0,682	0,798
104	4,09	0,422	0,683	0,698	0,812
105	3,70	0,415	0,740	0,698	0,793
106	4,27	0,431	0,655	0,698	0,802
107	3,48	0,416	0,767	0,698	0,764
108	3,88	0,423	0,707°	0,697 c	0,803
109	3,77	0,425	0,719	0,733	0,824
110	3,86	0,421	0,717	0,714	0,807
111	4,42	0,480	0,638	0,802	0,854

Tabelle 1 (Fortsetzung)

Nr.*	$L_{ m p}$	p	${\bf p}_{\bm{d}}^{\bm{x}_{-}}$	Pδ	$\overline{\varrho}_b$
112	4,26	0,434	0,669	0,730	0,858
113	4,39	0,440	0,649	0,730	0,841
114	4,14	0,428	0,682	0,727	0,846
115	4,26	0,430	0,672	0,724	0,856
116	4,32	0,434	0,661	0,724	0,845
117	3,84	0,421	0,717 c	0,718°	0,810
118	4,26	0,435	0,669°	0,731 c	0,857
119	4,41	0,443	$0.644\mathrm{c}$	0,731 c	0,837
120	4,11	$0,\!422$	0,687	0,713	0,840
121	4,26	0,439	0,669	0,742	0,860
122	3,87	$0,\!422$	0.712	0,717	0,826
123	3,73	0,420	0,734	0,700	0,794
124	4,11	0,430	0,680	0,700	0,810
125	3,76	0,423	0,716	0,731	0,824
126	3,84	0,424	0,710	0,730	0,829
127	4,50	0,516	0,617	0,762	0,804
128	3,58	$0,\!425$	0,744	0,755	0,798
129	3,65	0,426	0,739	0,745	0,814
130	3,75	0,424	0,731	0,735	0,817
131	4,23	0,451	0,667	0,767	0,862
132	4,31	0,435	0,661	0,724	0,844
133	$4,\!25$	0,430	0,673	0,724	0,856
134	4,21	0,435	0,669	0.732	0,847
135	4,33	0,440	0,659	0,730	0,845

^{*} Strukturformeln siehe Anhang.

Um über den Zusammenhang zwischen diesen Größen einen Überblick zu bekommen, wurden die Korrelationskoeffizienten z berechnet⁸ nach

$$\mathbf{x}_{xy} = \frac{n\sum xy - \sum x \cdot \sum y}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}} \; .$$

Hierin stellen x und y je einen der oben genannten Reaktionsindices dar. In Tab. 2 sind die so berechneten Korrelationskoeffizienten angegeben. Da sie ein Maß dafür sind, wieweit die korrelierten Größen in einem linearen Zusammenhang stehen, kann der Tab. 2 sofort entnommen werden, daß von allen in Betracht gezogenen Reaktionsindizes die exo-dienoide Charakterordnung ρ_d^x mit der p-Lokalisierungsenergie am

^a Bei ⁵ angegeben.

^b Bei ⁶ angegeben.

^c Bei ⁷ angegeben.

⁸ P. G. Hoel, Introduct. to Mathemat. Statistics, Wiley, New York und London, 3. Aufl. 1964, S. 165.

besten korreliert. Wir stellen daher nur diese Korrelation graphisch dar (Abb. 2).

Tabelle 2. Korrelationskoeffizienten x · 100 (Systeme von Tab. 1)

	$L_{\mathfrak{p}}$	р	$ ho_d^x$	ρ _b
p	64			
$ec{oldsymbol{ ho}_d^x}$	98	73		
$\frac{\rho_b}{\overline{\rho}_b}$	42	84	52	
$\rho_{\mathbf{b}}$	78	46	73	55

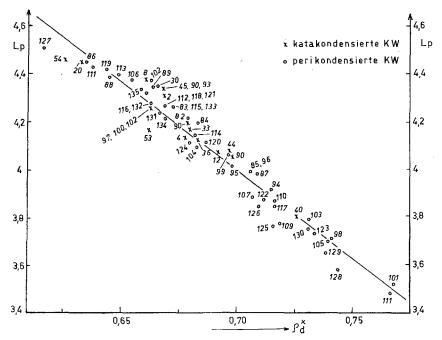


Abb. 2. Angriff an exo-cisoiden C4-Einheiten

Wie man aus Tab. 1 und 2 und aus Abb. 2 ersieht, steigt $L_{\rm p}$ mit abnehmendem ρ_d^x bzw. mit zunehmendem ρ_b oder $\bar{\rho}_b$. Dieses Verhalten ist gut zu verstehen: Je größer ρ_d^x für ein bestimmtes exo-cisoides C₄-Bruchstück ist, um so stärker ist in diesem der Butandiencharakter ausgeprägt und um so geringer muß die für die Lokalisierung je eines Elektrons an den Enden der C₄-Einheit benötigte Energie $L_{\rm p}$ sein. Umgekehrt, je größer der Benzolcharakter ρ_b des die beiden mittleren Atome der C₄-

Einheit beinhaltenden Ringes ist, um so geringer muß der Butadiencharakter und um so größer $L_{\rm p}$ sein. Gleiches gilt für den mittleren Benzolcharakter ρ_b aller angrenzenden Ringe.

Angriff an endo-cisoiden C₄-Einheiten katakondensierter aromatischer Kohlenwasserstoffe

Wie schon Tyutyulkov⁶ zeigte, ist es zweckmäßig, hier zwischen dem Angriff an ausschließlich sekundären C-Atomen (z. B. Anthracen, 9,10-Position) und der Reaktion unter Einbeziehung tertiärer C-Atome zu unterscheiden. Für den letzteren Fall bestehen wieder zwei Möglichkeiten, je nachdem, ob die angegriffenen p-Positionen einem Benzolring angehören, der mit Ring I, Stellungen 2 und 4a (Typ I), oder mit Ring II, Stellungen 9 und 4a (Typ II), im Phenanthren (Abb. 1b und c) korrespondiert.

Tabelle 3. Angriff an endo-cisoiden C₄-Einheiten, ausschließlich sekundäre C-Atome

Nr.	$L_{ m p}$	_ p	$\overline{ ho}_d^d$	Ρο	$ ho_b^n$	$\overline{ ho}_b^n$
1	4,00 b	0,667	0,820	1,000		
3	$3,96 ^{\mathrm{b}}$	0,640	0,804	0.975a		
6	$3,63 \mathrm{b}$	0,536	0,772	0.893a	0,840	
7	$3,31^{\rm b}$	0,485	0,741	0.840a	·	0,893
9	$3,77^{ \mathrm{b}}$	0,582	0,782	0.928a	0,813	,
13	$3,42^{\mathrm{b}}$	0,498	0,743	0,850a	ŕ	0,846
14	3,65	0,544	0,773	0,899a	0,850	, -
15	3,79	0,587	0,782	0,930a	0,793	
21	$3,74^{\rm \ b}$	0,576	0,782	0,923a	0,832	
26	$3,74^{ \mathrm{b}}$	0.574	0,781	0,922 c	0,833	
34	3,78	0,585	0,782	0,929 c	0,800	
35	$3,51^{ \mathrm{b}}$	0,513	0,746	0,863 c	. ,	0,800
37	3,78	0,585	0.782	0,929a	0,800	-,
38	3,51	0,513	0,746	0,863a	-,	0,800
41	$3,66^{\mathrm{b}}$	0,547	0,774	0,901a	0,851	0,000
1 2	3,45 b	0,500	0,741	0,851 a	-,	0,836
46	3,70 b	0,550	0,774	0,9032	0,859	,,,,,
47	3,49 b	0,508	0,746	0,859a	,,,,,,,	0,798
55	3,38 b	0,494	0,743	0,848 °		0,854
56	$3,64^{\mathrm{b}}$	0,542	0,772	0,8970	0,848	,,,,,,,
57	$3,74^{\rm \ b}$	0,574	0,782	0,922 c	0,836	
66	$3,23^{\mathrm{b}}$	0,462	0,734	0,821°	-,550	0.848
67	3,61 b	0,526	0,769	0,8860	0,821	3,010
68	3,18 ^b	0,451	0,729	0,811 6	-,	0,821

a bei ⁵ angegeben

b bei 6 angegeben

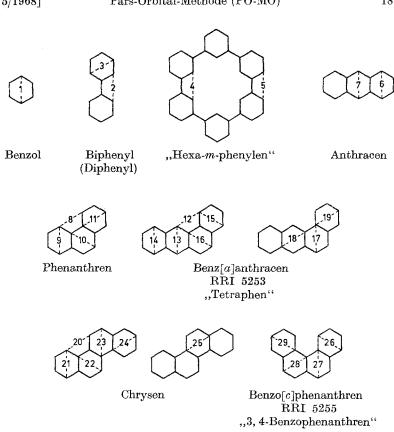
c bei 7 angegeben

Für den Angriff an endo-cisoiden C_4 -Einheiten (z. B. in den Positionen 1 und 4 der Abb. 1a) wurden die Charakterordnungen ρ der folgenden Bruchstücke berechnet und mit L_p sowie untereinander verglichen:

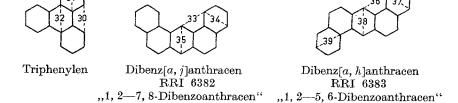
Bruchstücke Positionen in Abb. 1a Abkürzung Äthylene (Mittelwert) (2, 3) und (5, 6)
$$\bar{p} = \frac{1}{2} (p_{23} + p_{56})$$
 Butadiene (Mittelwert) (1, 2, 3, 4) und (4, 5, 6, 1)
$$\bar{\rho}_d^d = \frac{1}{2} (\rho_{1,2,3,4}^d + \rho_{4,5,6,1}^d)$$
 Benzol 1 bis 6
$$\rho_b$$

Tab. 3 und 4 enthalten die so berechneten Reaktionsindices.

Tabelle 4. Angriff an endo-cisoiden C₄-Einheiten unter Einbeziehung tertiärer C-Atome

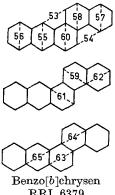

a) Typ I					b) Typ II				
Nr.	$L_{ m p}$	$\bar{f p}$	$ar{ar{ ho}}_d^d$	Ρδ	Nr.	$L_{ m p}$	$\bar{f p}$	$ar{ar{ ho}_d^d}$	ρь
11	4,52	0,638	0,753	0,928ª	10	4,46	0,524	0,682	0,813ª
18	5,18	0,606	0,678	0.850a	16	4,57	0,520	0,661	0,793a
19	$4,48^{b}$	0,638	0,756	0,930a	17	$4\ 43$	0,497	0,673	0,793a
24	4,55	0,638	0,748	0,923a	22	4,52 b	0,547	0,690	0.832a
25	5,20	0,615	0,664	0.832a	23	4,33 b	0,536	0,700	0.832a
29	4,57	0,640	0,746	0,922 c	27	4,52 b	0,547	0,691	0.833 $^{\rm c}$
32	4,45	0,646	0,764	0,940a	28	$4,25^{b}$	0,528	0,703	$0.833 ^{\rm c}$
39	4,49b	0,638	0,754	0,929a	31	5,22	0,495	0,590	0,714a
50	4,43	0,646	0,766	0.942a	43	$4,55^{\rm b}$	0,492	0,651	0,772a
51	4.43^{b}	0.646	0,766	0.942a	48	5,31	0,492	0,570	0,694a
52	5,13	0,616	0,686	0,859a	49	5,21	0,466	0,580	0,694a
62	4.56	0,638	0,746	0.922 c	58	4,29	0,538	0,704	0,836 c
63	5,27	0,612	0,646	0.812c	59	4,54	0,552	0,691	0.836 c
64	5,16	0,614	0,668	0.836 c	60	4,29	0,510	0,691	0,812 c
65	5,21	0,604	0,676	0,848 c	61	4,63	0,543	0,670	0,812 c
74	4,59	0,639	0,742	0.919c	69	4,56	0,565	0,698	0,847 c
75	5,14	0,622	0,678	0,847 c	70	4,18	0,538	0,717	$0.847 ^{\circ}$
76	4,47	0,646	0,761	0,937 c	71	5,09	0,504	0,606	0,733 °
77	4,47	0,646	0,762	$0,937$ $^{\rm c}$	72	5,26	0,518	0,600	0,733 c
78	4,49	0,648	0,758	$0,935^{\rm c}$	73	5,01	0,496	0,609	$0,733$ $^{ m e}$
79	4,47	0,643	0,760	$0,935\mathrm{c}$	81	4,51 b	0,514	0,690	0,818ª

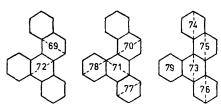
a bei 5 angegeben


Die Tab. 5 gibt den wie oben angegeben berechneten Korrelationskoeffizienten \varkappa für diese Charakterordnungen und $L_{\rm p}$ wieder.

b bei 6 angegeben

c bei 7 angegeben

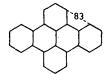



Pentaphen Dibenz[
$$a, c$$
]anthracen

RRI 6381 "1, 2—3, 4-Dibenzo-anthracen"

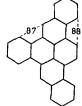
Pentacen

RRI 6379 "3, 4-Benzotetraphen"

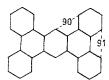


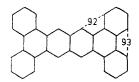
 ${\tt Benzo}[g] {\tt chrysen}$ RRI 6385 "3, 4—9, 10-Dibenzo-phenanthren"

Pyren


Benzo[e]pyrenRRI 6400 "1, 2-Benzo-pyren"

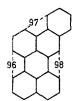
Dibenzo[fg, op]naphthacen RRI 7022 "1, 2—6, 7-Dibenzopyren"

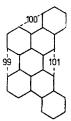

Naphtho[1, 2, 3, 4-def]chrysen, RRI 7026 "1, 2—4, 5-Dibenzo-pyren"

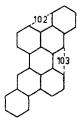

Dibenzo[h, rst]pentaphen, RRI 7381 ,,1,2-4,5-8,9-Tribenzopyren"

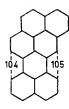
 ${\bf Dibenzo}[g,p]{\bf chrysen}$ **RRI 7010** ,,1,2-7,8-Dibenzo--chrysen"

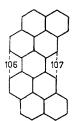
Tetrabenz[a, c, h, j]anthracen, RRI 7369 ,,1, 2—3, 4—5, 6—7, 8-Tetrabenzoanthracen"

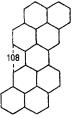

Tetrabenz[a, c, j, l]naphthacen "1, 2—3, 4—7, 8—9, 10-Tetrabenzotetracen"


Perylen


 $\begin{array}{c} \mathrm{Benzo}[g,h,i] \mathrm{perylen} \\ \mathrm{RRI} \ 7036 \end{array}$ "1, 12-Benzoperylen"

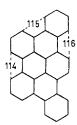

Benzo[b]perylenRRI 7024 "2, 3-Benzoperylen"


Dibenzo[b, u]perylen RRI 7378 "2, 3—10, 11-Dibenzoperylen" "2, 3—8, 9-Dibenzoperylen"


 $\begin{array}{c} {\rm Dibenzo}[fg,\ qr] {\rm perylen} \\ {\rm RRI} \ \ 7375 \end{array}$

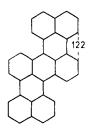
Naphtho[2, 1, 8-cde]perylen

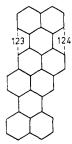
Dinaphtho[2, 1, 8, 7-defg:2', 1', 8', 7'-ijklpentaphen, RRI 7618 "1, 14—10, 11-Dibenzoperopyren" "1, 14—7, 8-Dibenzoperopyren"



Dinaphtho[2, 1, 8, 7-gefg: 2', 1', 8', 7'-opqr]pentacen, RRI 7621

Dibenzo[a, o]perylen RRI 7386 ,,1, 2—11, 12-Dibenzoperylen"

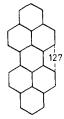

Benzo[qr]-naphtho[2, 1, 8, 7-fghi]pentacen, RRI 7525
,,1, 12—2, 3—8, 9-Tribenzoperylen"


Tribenzo[fg, ij, rst]pentaphen, RRI 7524
,,1,12—2, 3—10, 11-Tribenzoperylen"

Anthra[2, 1, 9, 8, 7-defghi]benzo[qr]pentacen ,,1, 12—2, 3—9, 10-Tribenzo-anthanthren".

Dibenzo[fg, ij]naphtho-[1, 2, 3, 4-rst]pentaphen ,,1, 12-o-Phenylen-2, 8—10, 11-dibenzo-perylen"

Tetrabenzo[de, hi, op, st]pentacen, RRI 7615 ,,1, 9—5, 10-Di-(perinaphthylen)-anthracen"


Dibenzo[de, mn]naphtho[2, 1, 8, 7, 6tuvwx]hexaphen
,,2, 3—7, 8-Di-(peri.
naphthylen)-pyren"

Phenanthro[1, 10, 9, 8opqra]perylen, RRI 7529 "Bisanthen"

Dibenzo[bc, ef]coronen, RRI 7623 ,,1, 14-Benzo-bisanthen"

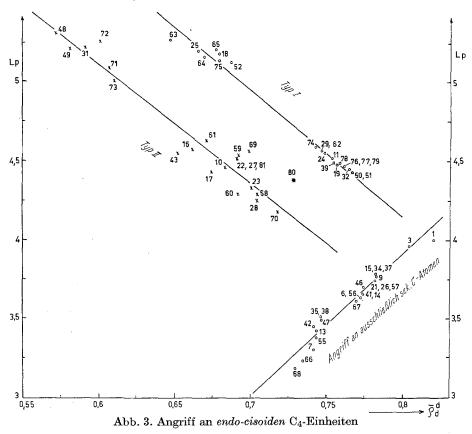
Dibenzo[cd, lm]perylen, RRI 7391 ,,Peropyren"

Dibenzo[de, mn]naphthacen RRI 7025 "Zethren"

Dibenzo[de, op]pentacen RRI 7376 ,,Heptazethren"

 $\label{eq:distance} \begin{array}{c} {\rm Dibenzo}[\mathit{fg},\mathit{uv}] \\ {\rm heptacen} \\ ,,4,5--12,13-{\rm Dibenzo-heptazethren''} \end{array}$

Dibenzo[fg, rst]phenanthro[2, 1, 10, 9-ijkl]pentaphen ,,1, 2—2, 3—6, 7—8, 9-Tetrabenzo-anthanthren"


Tabelle 5. x · 100

Angriff an aus- schließlich se- kundären C-Atomen	Typ I	Typ II		
$L_{ m p}$ $ar{f p}$ $ar{ar{ ho}_d^d}$	$L_{ m p} = ar{ m p} = ar{ ho}_d^d$	$L_{ m p} = ar{ m p} = ar{ m ho}_d^d$		
$\bar{\mathrm{p}}$ 98	97	58		
$rac{ar{arrho}_d^d}{arrho_d^d}$ 97 98	99 95	96 75		
ρ _b 99 100 98	99 95 100	92 84 99		
Systeme gemäß Tab. 3	Systeme gemäß Tab. 4 a	Systeme gemäß Tab. 4b		

Aus Tab. 5 ersieht man, daß $L_{\rm p}$ für alle 3 Gruppen am besten mit $\bar{\rho}_d^d$ korreliert, daher wird (in Analogie zu Abb. 2) nur diese Beziehung graphisch dargestellt (Abb. 3). Man kann die Punkte drei Geraden zuordnen. Die eine repräsentiert alle diejenigen Systeme, bei denen der Angriff ausschließlich an sekundären C-Atomen erfolgt und bei denen mit zu-

nehmender butadienoider Charakterordnung die p-Lokalisierungsenergie ansteigt*.

Die anderen beiden zueinander parallelen Geraden umfassen Systeme, wo beim MSA-Angriff tertiäre C-Atome miteinbezogen sind. Je nachdem,

ob dieser Angriff nach Typ I oder Typ II (vgl. Abb. 1c) erfolgt, teilen sich die Systeme auf diese beiden Geraden auf**. Deren Anstiege sind negativ: Mit zunehmendem $\bar{\rho}_d^d$ wird L_p geringer, so daß die Reaktionen leichter stattfinden können.

^{*} Auf die Beziehung zwischen freier Valenz und L_p sei verwiesen 9 : Je höher die Summe der freien Valenzen in den p-Positionen eines Benzolringes ist, um so niedriger ist L_p . Das auch von Brown untersuchte Phenanthren 9 (Reaktion an der exo-cisoiden C₄-Einheit wie bei 8) erfüllt diese Beziehung natürlich nicht.

^{**} Wenn ein Angriff sowohl I als auch II zugeordnet werden kann, z. B. 28, 70 und 73, so zeigt sich, daß die Zuordnung zu II den Gesetzmäßigkeiten entspricht.

⁹ R. D. Brown, J. Chem. Soc. [London] **1951**, 3129.

Diesen Unterschied der beiden Reaktionstypen kann man dahingehend interpretieren, daß es bei Reaktionen, die ausschließlich an sekundären C-Atomen erfolgen, nicht so sehr auf den butadienoiden als vielmehr auf den p-biradikalischen Charakter der betreffenden Ringpositionen ankommt*, diese Reaktionen also mehr dem Typ des MSA-Angriffs an den meso-Positionen des Anthracens entsprechen. Um dies zu überprüfen, betrachteten wir bei den Systemen von Tab. 3 außerdem

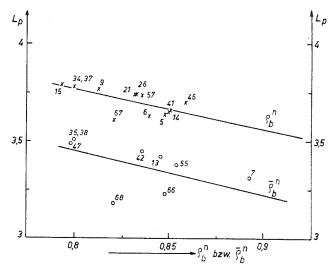


Abb. 4. Angriff an endo-cisoiden C₄-Einheiten, ausschließlich sekundäre C-Atome

die Benzol-Charakterordnungen des benachbarten Ringes (ρ_b^n) , falls der Benzolring, in welchem die benzogene Diels-Alder-Reaktion stattfindet, am Ende steht, bzw. das arithmetische Mittel der beiden benachbarten Ringe $(\bar{\rho}_b^n)$ und zeichneten die entsprechenden Korrelationen (Abb. 4). Wie zu erwarten, fällt $L_{\rm p}$ mit ρ_b^n bzw. $\bar{\rho}_b^n$, die Korrelationskoeffizienten betragen $\varkappa \cdot 100 = -51$ bzw. -69. Der Angriff unter Einschluß tertiärer C-Atome basiert offenbar auf dem butadienoiden Charakter, wie Abb. 3 zeigt. Der gefundene Zusammenhang kann als Hinweis auf den vermutlichen Mechanismus dieser Additionsreaktionen gewertet werden.

Bei Betrachtung der beiden parallelen Geraden in Abb. 3 beobachtet man fernerhin, daß auf die unteren Bereiche dieser beiden parallelen

^{*} Der gegenläufige Zusammenhang zwischen $\rho_{benzoid}$ und biradikalischem Charakter wurde festgestellt $^5.$

Geraden die Angriffe an einem sekundären und einem tertiären C-Atom, auf die oberen Bereiche die Angriffe an zwei tertiären C-Atome entfallen. Es ist klar, daß zur Isolierung der Elektronen im letztgenannten Fall mehr Energie aufgewendet werden muß und $L_{\rm p}$ größer ist, so daß die Reaktion ersehwert wird.

Beim Pyren tritt neben dem Typ II (81) ein weiterer Typ des Angriffs an endo-cisoiden C₄-Einheiten unter Einbeziehung tertiärer C-Atome auf, wenn es gemäß (80) reagiert. Die für diese Reaktionsweise errechneten Daten ($L_{\rm p}=4.38^{\rm s},~\bar{\rm p}=0.596,~\bar{\rho}_d^d=0.728,~\rho_b=0.882^{\rm s}$) fügen sich in keine der beiden Typen ein.

Dem Vorstand des Instituts für Numerische Mathematik der Techn. Hochschule Wien, Herrn Prof. Dr. H. J. Stetter, danken wir für die an der elektronischen Rechenanlage IBM 7040 der Techn. Hochschule Wien zur Verfügung gestellten Rechenzeiten.